An Odorant-Binding Protein Required for Suppression of Sweet Taste by Bitter Chemicals

نویسندگان

  • Yong Taek Jeong
  • Jaewon Shim
  • So Ra Oh
  • Hong In Yoon
  • Chul Hoon Kim
  • Seok Jun Moon
  • Craig Montell
چکیده

Animals often must decide whether or not to consume a diet that contains competing attractive and aversive compounds. Here, using the fruit fly, Drosophila melanogaster, we describe a mechanism that influences this decision. Addition of bitter compounds to sucrose suppressed feeding behavior, and this inhibition depended on an odorant-binding protein (OBP) termed OBP49a. In wild-type flies, bitter compounds suppressed sucrose-induced action potentials, and the inhibition was impaired in Obp49a mutants. However, loss of OBP49a did not affect action potentials in sugar- or bitter-activated gustatory receptor neurons (GRNs) when the GRNs were presented with just one type of tastant. OBP49a was expressed in accessory cells and acted non-cell-autonomously to attenuate nerve firings in sugar-activated GRNs when bitter compounds were combined with sucrose. These findings demonstrate an unexpected role for an OBP in taste and identify a molecular player involved in the integration of opposing attractive and aversive gustatory inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spoonful of Bitter Helps the Sugar Response Go Down

Sweet and bitter taste distinguishes good food sources from potential toxins, but what happens when these tastants are mixed? In this issue of Neuron, Jeong et al. (2013) show that in Drosophila, bitter compounds act through an extracellular odorant-binding protein to inhibit sweet-responsive neurons and block the response to sweet taste.

متن کامل

Enhancing Perception of Contaminated Food through Acid-Mediated Modulation of Taste Neuron Responses

BACKGROUND Natural foods contain not only nutrients, but also nonnutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions. RESULTS Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster...

متن کامل

Presynaptic Gain Control Drives Sweet and Bitter Taste Integration in Drosophila

The sense of taste is critical in determining the nutritional suitability of foods. Sweet and bitter are primary taste modalities in mammals, and their behavioral relevance is similar in flies. Sweet taste drives the appetitive response to energy sources, whereas bitter taste drives avoidance of potential toxins and also suppresses the sweet response [1, 2]. Despite their importance to survival...

متن کامل

Identification of a Drosophila Glucose Receptor Using Ca2+ Imaging of Single Chemosensory Neurons

Evaluation of food compounds by chemosensory cells is essential for animals to make appropriate feeding decisions. In the fruit fly Drosophila melanogaster, structurally diverse chemicals are detected by multimeric receptors composed of members of a large family of Gustatory receptor (Gr) proteins. Putative sugar and bitter receptors are expressed in distinct subsets of Gustatory Receptor Neuro...

متن کامل

Characterization and solubilization of bitter-responsive receptors that couple to gustducin.

The tastes of many bitter and sweet compounds are thought to be transduced via guanine nucleotide binding protein (G-protein)-coupled receptors, although the biochemical nature of these receptors is poorly understood at present. Gustducin, a taste-specific G-protein closely related to the transducins, is a key component in transducing the responses to compounds that humans equate with bitter an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2013